US 20240331293A1

a2y Patent Application Publication o) Pub. No.: US 2024/0331293 Al
(43) Pub. Date:

a9 United States

Borovikov et al.

Oct. 3, 2024

(54) SYSTEM FOR AUTOMATED GENERATION
OF FACIAL SHAPES FOR VIRTUAL
CHARACTER MODELS

(71) Applicant: Electronic Arts Inc., Redwood City,
CA (US)

(72) Inventors: Igor Borovikov, Foster City, CA (US);
Karine Levonyan, Belmont, CA (US);
Mihai Anghelescu, Coquitlam (CA);
Dave Auclair, Winter Park, FL (US);
Arjuna Ravikumar, Redwood City,
CA (US); Harold Henry Chaput,
Castro Valley, CA (US)

(21) Appl. No.: 18/194,074

(22) Filed: Mar. 31, 2023

.......................

Publication Classification

(51) Int. CL

GO6T 17/20 (2006.01)
GO6V 10/82 (2006.01)
GO6V 40/16 (2006.01)

(52) US.CL
CPC oo GO6T 17/20 (2013.01); GO6V 10/82

(2022.01); GOG6V 40/168 (2022.01)

(57) ABSTRACT

Systems and methods are provided for enhanced face shape
generation for virtual entities based on generative modeling
techniques. An example method includes training models
based on synthetically generated faces and information
associated with an authoring system. The modeling system
being trained to reconstruct face shapes for virtual entities
based on a latent space embedding of a face identity.

Maassssaen o4

ity Decoder Authoring
Receive Face lijenvt.ty > Engine fyi Engine
Model Request P Lngine > =N b ging
R 118 Latent £ 120 Authoring 130
108 atent Feature | 7T i 0rINg
Representation Parameters
114 124

~132A

Face Model
132

US 2024/0331293 A1

Oct. 3,2024 Sheet 1 of 8

Patent Application Publication

mtaﬁ W LBAS DNLLNGIROO JALLOYHIIN M

.v — v
YivQ

NOLLYOT1ddY

08
WHLSAS
NOLLVHINGD T300W

oG
WILSAS
NOILYHEINIO 20Vd

|

Vi Old

804
HHOMIIN

0L WILSAS ONLLNGWOD €38N

P01 NOLLYD IddY 3WYO

061
WNELLSAS
NOLLVMENTD 30V

204
WILISAS
SNLLNGWNOD
HISN

V,/omw

b}

US 2024/0331293 A1

Oct. 3,2024 Sheet 2 of 8

Patent Application Publication

B —

dl 9Old

Al
auiduy

18poaag

1t
LoReIUSSaday auniead uaIe]

e

g1t
swduy

Ausp

it
sisisuleled Juuouiny

E:S

€T
eieq) Sunieay
SHEITITEN

08T
suidul
Fuoyny

Patent Application Publication Oct. 3,2024 Sheet 3 of 8 US 2024/0331293 A1

Identity
Engine
110
FIG. 1C

US 2024/0331293 A1

Oct. 3,2024 Sheet 4 of 8

Patent Application Publication

azeL

A
1Bpon ey

A

OEY
3uBug
Buoyiny

¢ Old

¥Z1
sizlswieiey

Bupoyany

A

LAY
Fu8ug
J3p033Q

¥iy
uoneiuasasday
ainiesd Jusied

01t
sduy
Ayzuapi

oo

30T
15anbay [epon
00§ BAIRDDY

Patent Application Publication

300~

&

Oct. 3,2024 Sheet 5 of 8

-~ 302

GENERATE SYNTHETIC FACE

MODELS

— 304

RECEIVE AUTHORING
PARAMETERS FOR MODELS

4 306

DETERMINE LATENT FEATURE
REPRESENTATION OF MODELS

\ 4 308

GENERATE MAPPING OF
LATENT REPRESENTATION TO
AUTHORING PARAMETERS

'b 310

OUTPUT DECODING ENGINE

FIG. 3

US 2024/0331293 A1

Patent Application Publication

400

Oct. 3,2024 Sheet 6 of 8

RECEWVE FACE MODEL IDENTITY

402
REQUEST

$ 404

GENERATE LATENT EMBEDDING
FOR REQUESTED FACE MODEL

406

GENERATE AUTHORING
PARAMETERS BASED ON LATENT

EMBEDDING

v 408

GENERATE FACE MODEL BASED
ON AUTHORING PARAMETERS

GCENERATE ADDITIONAL FACE
CHARACTERISTICS

VL’ _—410

¢ —~~412

OUTPUT FACE MODEL

FIG. 4

US 2024/0331293 A1

Patent Application Publication Oct. 3,2024 Sheet 7 of 8 US 2024/0331293 A1

5320

FIG. 5A
FIG. 5B

5328

532A

US 2024/0331293 A1

Oct. 3,2024 Sheet 8 of 8

Patent Application Publication

9 'Old

011 WILSAS ONILNAWOD Y380
vz
HOSSIO0H
SOHAVHD
-y
8¢
SHHOMULIN e iy 95
O/ YHOMLIN A A
SAVIASIO] B g es
0N AYIdSIa o HE YT
LN
- ONISSID0E 0%
™ 1
SFONIQ ¥ISN bl | L b 2010
.
NOM
vy v e 2r
JOVHOLS |t b CC la—ip
FIEYAONTY JIAT o ﬁ« Wvd
A 4
" 2z
HAAYIY
FOVHOLS R ETNE)
2
VIGIN IO

US 2024/0331293 Al

SYSTEM FOR AUTOMATED GENERATION
OF FACIAL SHAPES FOR VIRTUAL
CHARACTER MODELS

TECHNICAL FIELD

[0001] The present disclosure relates to systems and tech-
niques for generation of facial shapes for virtual character
models. More specifically, this disclosure relates to machine
learning techniques for character model generation of
human faces.

BACKGROUND

[0002] Electronic games are increasingly becoming more
realistic due to an increase in available processing resources.
Populating virtual worlds with many realistic-looking char-
acters is far from trivial yet in high demand. The efficient
generation of random realistic human heads is motivated by
the need for a substantial number of background and non-
player characters without hand-authoring them. Examples
include random encounters in role-playing games, charac-
ters of a background crowd in cinematics, a virtual audience
of stadiums, secondary team players in sports games, and a
virtual audience in the virtual reality (VR) events like
classes, concerts, and alike. Randomly generated player
avatars also fall into the category of pseudo-random char-
acters. All these have to come in large numbers at a low
production cost, perhaps, even on-the-fly during run-time. A
potential shortcut is to use random photographs of real
people and reproduce their likeness via reconstruction and
3D shape estimation. While face generation from real ref-
erences could technically work for randomization, it can be
problematic due to privacy and licensing concerns around
facial datasets.

SUMMARY OF CERTAIN EMBODIMENTS

[0003] In some aspects, the techniques described herein
relate to a computer-implemented method including: receiv-
ing a request to generate a first virtual face model; accessing
an identity engine trained based on a plurality of human
faces, each human face being defined based on location
information associated with a plurality of facial features,
wherein the identity engine trained to generate a latent
feature representation of individual human faces, wherein
the latent feature representation is associated with an iden-
tity of the virtual human face; generating, using the identity
engine, a latent feature representation of the first virtual face
based at least in part on the request, wherein the latent
feature representation is associated with a first identity;
accessing a decoding engine, the decoding engine trained to
reconstruct, via a latent variable space, authoring parameters
for an authoring engine based on a latent feature represen-
tation of a human face; generating, using the decoding
engine, authoring parameters based at least in part on the
latent feature representation of the first virtual face; and
generating, using the authoring engine, a virtual face model
of the at least one virtual face based at least in part on the
authoring parameters, wherein the virtual face model has the
first identity, wherein the virtual face model is mesh model.
[0004] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the
request further includes an image of a human face, and
wherein the image of the human has the first identity.

Oct. 3, 2024

[0005] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the
latent feature representation is pseudo-randomly generated
based on a latent space associated with the identity engine.
[0006] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the
request further includes requests to generate a plurality of
virtual face models and latent feature representation of
individual virtual faces is generated for each of the plurality
of requested virtual face models.

[0007] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein each of
the plurality of virtual face identities is pseudo-randomly
generated and each of the virtual face identities is generated
from the latent space associated with the identity engine,
wherein each latent feature representation is separated from
other latent feature representations by a defined threshold
value.

[0008] In some aspects, the techniques described herein
relate to a computer-implemented method further including
generating at least one facial characteristic associated with
the mesh of the virtual face model.

[0009] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the at
least one facial characteristic includes at least one of skin
texture, eye texture, hair mesh, or hair texture.

[0010] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the
decoding engine is trained based on the latent space specific
to the identity engine and the authoring parameters specific
to the authoring engine.

[0011] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the
latent feature representation is a vector have defined number
of values.

[0012] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the
vector is representative of an invariant identity of first
identity.

[0013] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the
virtual face model is generated based on weights associated
with a plurality of blendshapes that the define a shape of the
mesh model.

[0014] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the
authoring parameters define weights associated with the
plurality of blendshapes.

[0015] In some aspects, the techniques described herein
relate to a computer-implemented method, wherein the
decoding engine is a machine learning generated using a
deep neural network.

[0016] In some aspects, the techniques described herein
relate to non-transitory computer storage media storing
instructions that when executed by a system of one or more
computers, cause the one or more computers to perform
operations including: receiving a request to generate a first
virtual face model; accessing an identity engine trained
based on a plurality of human faces, each human face being
defined based on location information associated with a
plurality of facial features, wherein the identity engine
trained to generate a latent feature representation of indi-
vidual human faces, wherein the latent feature representa-
tion is associated with an identity of the virtual human face;

US 2024/0331293 Al

generating, using the identity engine, a latent feature repre-
sentation of the first virtual face based at least in part on the
request, wherein the latent feature representation is associ-
ated with a first identity; accessing a decoding engine, the
decoding engine trained to reconstruct, via a latent variable
space, authoring parameters for an authoring engine based
on a latent feature representation of a human face; generat-
ing, using the decoding engine, authoring parameters based
at least in part on the latent feature representation of the first
virtual face; and generating, using the authoring engine, a
virtual face model of the at least one virtual face based at
least in part on the authoring parameters, wherein the virtual
face model has the first identity, wherein the virtual face
model is mesh model.

[0017] In some aspects, the techniques described herein
relate to a non-transitory computer storage media, wherein
the latent feature representation is pseudo-randomly gener-
ated based on a latent space associated with the identity
engine.

[0018] In some aspects, the techniques described herein
relate to a non-transitory computer storage media, wherein
the request further includes requests to generate a plurality
of virtual face models and latent feature representation of
individual virtual faces is generated for each of the plurality
of requested virtual face models.

[0019] In some aspects, the techniques described herein
relate to a non-transitory computer storage media, wherein
each of the plurality of virtual face identities is pseudo-
randomly generated and each of the virtual face identities is
generated from the latent space associated with the identity
engine, wherein each latent feature representation is sepa-
rated from other latent feature representations by a defined
threshold value.

[0020] In some aspects, the techniques described herein
relate to a system including one or more computers and
non-transitory computer storage media storing instructions
that when executed by the one or more computers, cause the
one or more computers to perform operations including:
receiving a request to generate a first virtual face model;
accessing an identity engine trained based on a plurality of
human faces, each human face being defined based on
location information associated with a plurality of facial
features, wherein the identity engine trained to generate a
latent feature representation of individual human faces,
wherein the latent feature representation is associated with
an identity of the virtual human face; generating, using the
identity engine, a latent feature representation of the first
virtual face based at least in part on the request, wherein the
latent feature representation is associated with a first iden-
tity; accessing a decoding engine, the decoding engine
trained to reconstruct, via a latent variable space, authoring
parameters for an authoring engine based on a latent feature
representation of a human face; generating, using the decod-
ing engine, authoring parameters based at least in part on the
latent feature representation of the first virtual face; and
generating, using the authoring engine, a virtual face model
of the at least one virtual face based at least in part on the
authoring parameters, wherein the virtual face model has the
first identity, wherein the virtual face model is mesh model.

[0021] In some aspects, the techniques described herein
relate to a system, wherein the request further includes
requests to generate a plurality of virtual face models and

Oct. 3, 2024

latent feature representation of individual virtual faces is
generated for each of the plurality of requested virtual face
models.

[0022] In some aspects, the techniques described herein
relate to a system, wherein each of the plurality of virtual
face identities is pseudo-randomly generated and each of the
virtual face identities is generated from the latent space
associated with the identity engine, wherein each latent
feature representation is separated from other latent feature
representations by a defined threshold value.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] Throughout the drawings, reference numbers are
re-used to indicate correspondence between referenced ele-
ments. The drawings are provided to illustrate embodiments
of the subject matter described herein and not to limit the
scope thereof.

[0024] FIG. 1A illustrates a block diagram of a computing
environment for implementing a face generation system.
[0025] FIG. 1B illustrates an example of a process of
training aspects of the face generation system.

[0026] FIG. 1C illustrates an example embodiment of
aspects of an identity engine.

[0027] FIG. 2 illustrates a block diagram of a runtime
process of a face generation system.

[0028] FIG. 3 illustrates an embodiment of a flowchart of
an example process for generating a decoding engine for
mapping a latent feature space to authoring parameters of an
authoring engine.

[0029] FIG. 4 illustrates an embodiment of a flowchart of
an example process for generating face models based on
latent feature representations of identities.

[0030] FIG. 5A illustrates examples of face shapes gen-
erated by an authoring engine.

[0031] FIG. 5B illustrates examples of face shapes gen-
erated by an authoring engine using the face generation
system.

[0032] FIG. 6 illustrates an embodiment of computing

device according to the present disclosure.
[0033] Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

Overview

[0034] This specification describes, among other things,
technical improvements with respect to generation of face
models for virtual characters configured for use in electronic
video games. As will be described a system described herein
(e.g., the face generation system) may generate realistic face
models, including meshes and textures, based on latent
space representations of an identity engine. Advantageously,
the system may allow for substantially automated face
model generation. While electronic games are described, it
may be appreciated that the techniques described herein may
be applied generally to generation of face models and
features of character models. For example, animated content
(e.g., TV shows, movies) may employ the techniques
described herein.

[0035] The face generation system can utilize machine
learning models to generate a face models using a face
model authoring system based on identity information gen-
erated by an identity encoding system. The face models may

US 2024/0331293 Al

be generated based on a request providing identity informa-
tion to the identity encoding system or requesting that the
identity encoding system automatically generate identity
information. The output of which can be provided to an
authoring system to output a face model.

[0036] The system may use machine learning techniques,
such as an autoencoder, to reduce a dimensionality associ-
ated with the input features. In some embodiments, principle
component analysis may be used as a dimensionality reduc-
tion technique. With respect to an autoencoder, the system
may learn a latent feature space of a lower-dimension than
the input features. With respect to an autoencoder, an
encoder may learn to map input features of expressions to
the latent feature space. A decoder may then learn to map the
latent feature space to an output defining features of the face
models. Thus, the autoencoder may be trained to generate an
output face model based on a latent feature representation.
The learned latent feature space may represent a bottleneck,
which causes each latent variable in the latent feature space
to encode complex information associated with face models.
In this way, the autoencoder may learn a latent feature space
representing realistic face models.

[0037] The training process for generating a decoder
engine for an authoring engine can include generating
synthetic training data by the authoring engine. The syn-
thetic training data can be face models generated by the
authoring engine. The training of the decoder engine can
generate a mapping of a latent representation to another
linear model, such as the authoring parameters of a linear
modeling space for a blendshape-based model, to generate
face shapes consistent with the domain used for training the
autoencoder. The trained decoder engine can generate
authoring parameters corresponding to the identities gener-
ated within the latent space of the identity engine. These
authoring parameters can then be used by the authoring
engine to automatically generate synthetic face shapes that
are representative of realistic human faces.

[0038] In some embodiments, the techniques described
herein can be used during the development process of the
electronic game. In some embodiments, the techniques
described herein may be performed during in-game game-
play of an electronic game. For example, the game may need
to populate a location within the game environment, such as
a stadium, with thousands of realistic face models. The
electronic game may automatically generate realistic and
distinct face models for the identified game environment.

[0039] In some embodiments, the user may provide an
image of a face to be used for an in-game character to be
used within the electronic game. For example, the face
generation system can generate a face model that is a
realistic representation of the user for use as an in-game
character within the electronic game.

Example Networked Computing Environment

[0040] FIG. 1A illustrates an embodiment of a computing
environment 100 for implementing a face generation system
150. The environment 100 includes a network 106, a plu-
rality of user computing systems 102 and an interactive
computing system 140, which includes face generation
system 150, model generation system 160, and application
data store 142. The user computing system(s) 102 may
communicate via a network 106 with the interactive com-
puting system 140.

Oct. 3, 2024

[0041] Although only one network 106 is illustrated, mul-
tiple distinct and/or distributed networks 106 may exist. The
network 106 can include any type of communication net-
work. For example, the network 106 can include one or more
of'a wide area network (WAN), a local area network (LAN),
a cellular network, an ad hoc network, a satellite network, a
wired network, a wireless network, and so forth. In some
embodiments, the network 106 can include the Internet.

User Computing System

[0042] The user computing system 102 includes comput-
ing resources and an application data store 106. The user
computing system 102 may have varied local computing
resources such as central processing units and architectures,
memory, mass storage, graphics processing units, commu-
nication network availability and bandwidth, and so forth.
Further, the user computing system 102 may include any
type of computing system. For example, the user computing
system 102 may be any type of computing device, such as
a desktop, laptop, video game platform/console, television
set-top box, television (for example, Internet TVs), network-
enabled kiosk, car-console device, computerized appliance,
wearable device (for example, smart watches and glasses
with computing functionality), and wireless mobile devices
(for example, smart phones, PDAs, tablets, or the like), to
name a few. A more detailed description of an embodiment
of a computing system 102 is described below with respect
to FIG. 6.

Game Application

[0043] The user computing system 102 can execute a
game application based on software code stored at least in
part in the application data store. The game application may
also be referred to as a videogame, a game, game code
and/or a game program. A game application should be
understood to include software code that a computing device
102 can use to provide a game for a user to play. A game
application may comprise software code that informs a
computing device 102 of processor instructions to execute
but may also include data used in the playing of the game,
such as data relating to constants, images, route information,
and other data structures. In the illustrated embodiment, the
game application includes a game engine, game data, and
game state information.

[0044] In some embodiments, the user computing system
102 is capable of executing a game application, which may
be stored and/or executed in a distributed environment. For
example, the user computing system 102 may execute a
portion of a game and a network-based computing system,
may execute another portion of the game. For example, the
game may be an online multiplayer game that includes a
client portion executed by the user computing system 102
and a server portion executed by the interactive computing
system 140.

[0045] The game engine can be configured to execute
aspects of the operation of the game application within the
user computing system 102. Execution of aspects of game-
play within a game application can be based, at least in part,
on the user input received, the game data, and game state
information. The game data can include game rules, anima-
tion data, environmental settings, constraints, skeleton mod-
els, route information, and/or other game application infor-
mation.

US 2024/0331293 Al

[0046] The game engine can execute gameplay within the
game according to the game rules. Examples of game rules
can include rules for scoring, possible inputs, actions/events,
movement in response to inputs, and the like. Other com-
ponents can control what inputs are accepted and how the
game progresses, and other aspects of gameplay. The game
engine can receive the user inputs and determine in-game
events, such as actions, jumps, runs, throws, attacks and
other events appropriate for the game application. During
runtime operation, the game engine can read in game data
and game state information to determine the appropriate
in-game events. The game engine can include controllers for
virtual objects within the game application that can control
actions performed by the virtual object during runtime of the
game application.

[0047] In one example, after the game engine determines
the character events, the character events can be conveyed to
a character controller that can determine the action state of
the character and appropriate motions the character should
make in response to the events. The physics engine can
determine new poses for the characters based on the action
state and provide the new poses to a skinning and rendering
engine. The skinning and rendering engine, in turn, can
provide character images to an object combiner in order to
combine animate, inanimate, and background objects into a
full scene. The full scene can be conveyed to a renderer,
which generates a new frame for display to the user. The
process can be repeated for rendering each frame during
execution of the game application. Though the process has
been described in the context of a character, the process can
be applied to any process for processing events and render-
ing the output for display to a user.

[0048] The game data can include game rules, prerecorded
motion capture poses/paths, environmental settings, envi-
ronmental objects, constraints, skeleton models, route infor-
mation, and/or other game application information. At least
a portion of the game data can be stored in the application
data store 106. In some embodiments, a portion of the game
data may be received and/or stored remotely, such as in the
source asset data store. In such embodiments, game data
may be received during runtime of the game application.
[0049] During runtime, the game application can store
game state information, which can include a game state,
character states, environment states, scene object storage,
route information and/or other information associated with a
runtime state of the game application. For example, the
game state information can identify the state of the game
application at a specific point in time, such as a character
position, character orientation, character action, game level
attributes, and other information contributing to a state of the
game application. The game state information can include
dynamic state information that continually changes, such as
character movement positions, and static state information,
such as positions of goal posts on a field.

Interactive Computing System

[0050] The interactive computing system 140 may include
application host systems and an application data store 142.
In some embodiments, the interactive computing system 140
can include one or more computing devices, such as servers
and databases that may host and/or execute a portion of one
or more instances of the game application. In some embodi-
ments, the application host systems can include one or more
computing devices, such as servers and databases that may

Oct. 3, 2024

host and/or execute a portion of one or more instances of the
game application. In certain embodiments, instead of or in
addition to executing a portion of the game application, the
application host systems may execute another application,
which may complement and/or interact with the game
application during execution of an instance of the game
application.

[0051] The interactive computing system 140 may enable
multiple users or computing systems to access a portion of
the game application executed or hosted by the interactive
computing system 140. The interactive computing system
140 can have one or more game servers that are configured
to host online video games. For example, the interactive
computing system 140 may have one or more game servers
that are configured to host an instanced (e.g., a first person
shooter multiplayer match) or a persistent virtual environ-
ment (e.g., a multiplayer online roll playing game). The
virtual environment may enable one or more users to interact
with the environment and with each other in a synchronous
and/or asynchronous manner. In some cases, multiple
instances of the persistent virtual environment may be
created or hosted by one or more game servers. A set of users
may be assigned to or may access one instance of the virtual
environment while another set of users may be assigned to
or may access another instance of the virtual environment.
In some embodiments, the interactive computing system 140
may execute a hosting system for executing various aspects
of a game environment. For example, in one embodiment,
the game application may be a competitive game, such as a
first person shooter or sports game, and the interactive
computing system 140 can provide a dedicated hosting
service (such as, through the game servers) for hosting
multiplayer game instances or facilitate the creation of game
instances hosted by user computing systems 102.

Face Generation System

[0052] The face generation system 150 can utilize
machine learning models to generate a face models (such as
illustrated in FIG. 5B) using a face model authoring system,
such as authoring engine 130, based on identity information
generated by an identity encoding system, such as identity
engine 110. The face generation system 150 may, in some
embodiments, be a system of one or more computers, one or
more virtual machines executing on a system of one or more
computers, and so on. In some embodiments, the face
generation system 150 may be implemented as a module, or
software (e.g., an application), which may execute on a user
device (e.g., a laptop, tablet, console gaming system, and so
on). The models 532A-532C illustrated in FIG. 5B are an
example output of face models being generated by the face
generation system 150. While three distinct models are
illustrated, it may be appreciated that any number of face
models may be generated by the face generation system 150.
The face models may be generated based on a request
providing identity information to the identity encoding sys-
tem or requesting that the identity encoding system auto-
matically generate identity information. The output of which
can be provided to an authoring system to output a face
model. In some embodiments, the face generation system
150 may be executed by the user computing system 102
and/or the interactive computing system 140 during runtime
of the game application 104 to generate face models for one
or more virtual characters within a virtual environment. The

US 2024/0331293 Al

details of operation and training of the face generation
system 150 will be further described herein.

Model Generation System

[0053] The model generation system 160 can use one or
more machine learning algorithms to generate one or more
generative models or parameter functions. One or more of
these prediction models may be used to determine an
expected value or occurrence based on a set of inputs. The
machine learning algorithms can be configured to adaptively
develop and update the models over time based on new input
received by the model generation system 160. For example,
the models can be regenerated on a periodic basis as new
information is available to help keep the models accurate
over time. The model generation system 160 is described in
more detail herein.

Application Data Store

[0054] The interactive computing system 140 can include
one or more application data stores 142 that are configured
to store information associated with one or more game
applications, the face generation system 150, and/or the
model generation system 160. For example, the application
data stores 142 can store model data generated by the model
generation system. The interactive computing system 140
can include one or more data stores 142 that are configured
to store information associated with game application hosted
by the interactive computing system 140. The application
data stores 142 can include information associated with the
game application that is generated by the face generation
system 150. For example, the game data stores 142 can
include face shapes generated by the face generation system
150 that are used during runtime of the game application.

Embodiments of Model Training for the Face Generation
System

[0055] FIG. 1B illustrates an example of a process of
training aspects of the face generation system 150. In this
example, the face generation system 150 may implemented
as an autoencoder. As illustrated, the autoencoder may
include the identity engine 110 that generates identity infor-
mation, such as a latent feature representation 114. The
decoder engine 120 is trained to generate authoring param-
eters 124 based on the latent feature representation 114. The
components and training of the face generation system 150
are further described below.

Authoring Engine

[0056] The authoring engine 130 can be configured to
generate face models based one a plurality of authoring
parameters 124. The face models can be parametric face
models. The parametric facial modeling system captures the
face shape via weights applied to the blendshapes or bone
deformations used for modeling the geometry of the head.
Design of blendshapes can rely on anatomical knowledge,
manually modeled heads, scans, 4D animation capture, or a
combination of these. The goal of a parametric face model
is to provide a sufficiently wide expressive range to represent
a large variety of heads.

[0057] Due to the range of expressive power and indepen-
dence of parameters, a parametric model may produce
unrealistic grotesque or cartoonish heads when used with
extreme values of the parameters. Characters generated with

Oct. 3, 2024

extreme parameter values may also look technically broken
when the underlying mesh self-penetrates, folds on itself or
creates unnatural cusps, such as illustrated by the face
shapes 1-5 in FIG. 5A. However, artificially limiting the
values may lead to a repetitive synthetic appearance break-
ing the fiction of the virtual world.

[0058] The parametric representation of 3D shape
assumes the presence of the proper construction basis. In
some embodiments, a blendshape model can be used. A
blendshape model generates a facial pose as a linear com-
bination of a number of facial expressions. By varying the
weights of the linear combination, a range of facial expres-
sions can be expressed with little computation. The set of
shapes can be extended as desired to refine the range of
expressions that the character can produce. Blendshapes
provide linear face models in which the individual basis
vectors are not orthogonal but instead represent individual
facial expressions. The individual basis vectors can be
referred to blendshapes and the corresponding weights can
be referred to as sliders. The blendshapes are versatile and
can describe static neutral shapes and animations like
dynamic facial expressions. The implementation details may
vary widely utilizing explicit mesh morphs, bone deltas,
magnets, etc. A feature of the blendshape model is its
linearity: the space of general deformations is decomposed
via the vectors in multidimensional space to represent a
particular target shape. The weights of the blendshapes
contributing to the target shape (as in decomposing a vector
into a basis) can accurately define the geometry within a
specific domain.

[0059] The linearity of the parametric model can help to
generate plausible, realistic parametric heads. Another
important feature is the basis vector’s explicit visual or
anatomical semantics. The engineered semantics can be
local and not have implicit knowledge related to the corre-
lation of the features. The authoring parameters 124 gener-
ated by the decoder engine 120 can identity the blendshape
weights that can be used by the authoring engine 130 to
generate a face model 132. The face model can be a mesh
defining the shape of the face based on the weights of the
blendshapes.

[0060] The authoring engine 130 can additionally be con-
figured to generate other facial characteristics, such as skin
textures, eye textures, hair style, facial effects (e.g., car
rings, scars, freckles, etc.) that are used to complete a facial
model.

Identity Engine

[0061] The identity engine 110 can be described with
further reference to FIG. 1C. The identity engine 110 can use
machine learning techniques to provide a facial recognition
system to generate identity information, which can be
expressed as vector 114. The vector represents a latent
feature representation 114 of the identity information based
on an input face 116 of a person. The identity engine 110 can
be based on facial recognitions systems, such as FaceNet.
The identity engine can generate a high-quality face map-
ping from the images using deep learning architectures such
as ZF-Net and Inception. Then it can use a method called
triplet loss as a loss function to train this architecture.

[0062] One embodiment of a process for generating a
latent feature representation 114 can include a finding the
bounding box of the location of faces. Then finding facial
features such as length of eyes, length of mouth, the distance

US 2024/0331293 Al

between eyes and nose, and so on. The number of facial
features chosen may vary, for example, from five to seventy-
eight points, depending on annotation. After identifying
facial features, the distance between these points is mea-
sured. These values are used to classity a face. The faces can
be aligned using the facial features. This can be done to align
face images displayed from a different angle in a straight-
forward orientation. Then the features extracted can be
matched with a template. The aligned faces can be used for
comparison. The aligned face can then be analyzed to
generate an embedding of the face using face clustering. The
resultant identification encoding of the face, also referred to
as an identification representation, can be output for further
use be the face generation system 150. Though not perfect,
the identification representation can be invariant to occlu-
sion, pose, lighting and even age, and other factors that
would affect perceptive differences between different images
of the same person. The latent feature representation 114 is
representative of an encoding that provides an identity of a
person, which can also be referred to as the identity or
identity information of a person. In some embodiments, the
latent feature representation 114 can be a 512 value encod-
ing.

Decoder Engine

[0063] An autoencoder machine learning model may be
used for generating a decoder engine 120. As may be
appreciated, an autoencoder can be generated using a super-
vised machine learning technique capable of learning effi-
cient representations of input data. The decoder engine 120
may represent neural networks, such as dense (e.g., fully
connected) neural networks. As described above, the output
of the identity engine 110 may be provided to the decoder
engine 120 through a shared layer of variables (e.g., hidden
variables) which may be referred to as the latent feature
representation 114 of the input. As may be appreciated, the
output of the identity engine 110 may be obtained via a
forward pass of input identity information through layers
forming the identity engine 110.

[0064] The face generation system 150 may use a trained
encoder, such as the identity engine 110 that encodes the
identity information into a latent feature representation 114.
The encoder may be a universal encoder for translating the
input images and video into latent feature space represen-
tations. A resulting latent feature representation may be
generated which is based on distributions of latent variables.
The identity engine 110 can be trained prior to training of the
decoder engine 120. The face generation system 150 can
train a decoder engine for each authoring engine 130. Each
trained decoder engine 120 can then be used to decode a
latent feature representation 114 in order to output a face
model associated with the identity represented by the latent
feature representation 114.

[0065] The training process for generating a decoder
engine 120 for an authoring engine 130 includes generating
synthetic training data 132 by the authoring engine 130. The
synthetic training data 132 can be a face model generated by
the authoring engine 130. The application host systems 132
can include at least two components, 1) the face model
includes the authoring parameters 124 associated with the
generated face model, and 2) an image of the generated face
model. The image of the face model is provided to the
identity engine 110 to generate a latent feature representa-
tion 114 of the face. The goal of training the decoder engine

Oct. 3, 2024

120 is to generate a face model based on latent feature
representation 114 using the authoring parameters 124. The
training of the decoder engine 120 generates a mapping of
a latent representation (e.g., latent feature representation
114) to another linear model (e.g., the authoring parameters
124 of a linear modeling space for a blendshape-based
model) to generate shapes consistent with the domain used
for training the autoencoder. In one embodiment, a FaceNet
embedding and a target blendshape-based model with linear
parametric spaces are used.

[0066] In some embodiments, to construct the mapping
using machine learning (ML) techniques, random param-
eters can be generated by the authoring engine 130 and the
corresponding synthetic images. Next, a latent feature rep-
resentation 114 is generated by the identity engine 110 for
the generated synthetic images. The data pairs (i.e., the
authored face models and corresponding latent feature rep-
resentation 114) comprise the training data for the corre-
sponding supervised ML problem. A Deep Neural Network
(DNN) approach can be used to train the ML model. In one
example, a dataset includes 150,000 pairs total with 9:1 split
between training and validation datasets. Randomization can
be utilized to get a uniform distribution of parameters
values. Varying the DNN architectures can reach similar
optimal performance across a wide range of possible archi-
tectures. In one embodiment, a single fully-connected hid-
den layer FC(32k) is used to map the latent spaces of
interest.

[0067] The authoring parameters 124 for the authoring
engine 130 are the target output of the decoder engine 120.
The decoder engine 120 can be trained for a specific identity
engine 110 and a specific authoring engine 130. Advanta-
geously, once a decoder engine 120 is generated, new face
models can be generated by the authoring engine 130 by
providing latent feature representations 114 generated by the
identity engine 110 to the decoder engine 120. For example,
the latent feature representation may be generated randomly
or pseudo-randomly by the identity engine 110. Once gen-
erated, the decoder engine 120 can generate authoring
parameters 124 corresponding to the generated identities.
These authoring parameters 124 can then be used by the
authoring engine 130 to automatically generate synthetic
face shapes that are representative of human faces. In this
way, the face generation system 150 may generate new face
models based on randomly generated identities from an
identity engine 110. These expressions may advantageously
represent realistic face shapes of people (such as illustrated
in FIG. 5B).

Example Block Diagrams—Generating Output of Face
Model(s)

[0068] Generating realistic face shapes for a person for use
within an electronic game is of great importance to elec-
tronic game designers. For example, generating realistic face
shapes for a large group of virtual characters within a game
environment, such as in a stadium or on within a city can
allow for game designers to generate realistic virtual envi-
ronments where non-player characters have varying fea-
tures. As will be described, the techniques described herein
may allow for rapid generation of realistic face shapes of
that generally match the face shapes of real-life persons. For
example, thousands of face shapes of persons within a crowd
may be randomly generated by the face generation system
150.

US 2024/0331293 Al

[0069] FIG. 2 illustrates a block diagram of components of
the face generation system 150. The components can include
identity engine 110, decoder engine 120, and authoring
engine 130. The identity engine 110 and decoder engine 120
are previously trained models. The identity engine 110 can
generate a latent feature representation 114 representing a
facial identity and the decoder engine 120 can generate
authoring parameters 124 based on the latent feature repre-
sentation 114. The authoring parameters 124 are specific to
the authoring engine 130 and map to blendshapes used for
generating face shapes within the authoring engine 130.

[0070] The face generation system 150 can receive a
request 108 to generate one or more face models. The
request 108 can be generated prior to operation of a game
application (e.g., game application 104) in order to create
face models that are to be pre-loaded into the game appli-
cation. In such instances, the face generation system 150
may be executed during game development. In some
embodiments, the face generation system 150 request may
be configured to receive requests during runtime of the game
application 104. The request can specify a number of face
models to generate. For example, the request may be a
request for face models to populate a stadium (e.g., thou-
sands), a city street (e.g., hundreds), or other type of in-game
event or location. In some embodiments, the request may
include images associated with real-life persons that are to
be generated. For example, a user may upload an image and
request that a virtual entity is created based on the image.

[0071] The identity engine 110 can receive the request and
generate a latent feature representation 114 corresponding to
each entity requested. The latent feature representation 114
can be pseudo-randomly generated. The pseudo-random
generation can be performed in order to select representa-
tions within the latent space that represent visually distinct
faces. If values are selected within the latent space that are
too close, the faces will not be substantially distinguishable.
The pseudo-random generation of the latent feature repre-
sentation 114 can be configured to select the values that are
different from each other by a defined threshold or magni-
tude. The latent feature representations 114 are provided to
the decoder engine 120, which can generate authoring
parameters 124 for each of the latent feature representations
114. The authoring engine 130 can generate the face models
132 based on the authoring parameters 124. Additionally, the
authoring engine 130 can generate other facial characteris-
tics, such as skin textures, eye textures, hair style, facial
effects (e.g., car rings, scars, freckles, etc.) that are used to
complete a facial model. In this manner, realistic and distinct
face models can be automatically generated for use within a
game application.

Example Flowcharts for Training and Generation by Face
Generation System

[0072] Generating realistic face models for a person for
use within an electronic game is of great importance to
electronic game designers. For example, generating realistic
face models may allow for game designers to populate areas
within a game application with distinct facial models for the
virtual entities rather than reusing a defined set of face
models. As will be described, the techniques described
herein may allow for training of a model to be used for rapid
generation of face models of realistic human faces based on
synthetic training data.

Oct. 3, 2024

[0073] FIG. 3 is a flowchart of an example process 300 for
generating a decoding engine for mapping a latent feature
space to authoring parameters of an authoring engine. The
process 300 can be implemented by any system that can
process data of the authoring engine 130. For example, the
process 300, in whole or in part, can be implemented by a
game application 104, an interactive computing system 140,
face generation system 150, model generation system 160
and/or another system. Although any number of systems, in
whole or in part, can implement the process 300, to simplify
discussion, the process 300 will be described with respect to
particular systems. Further, although embodiments of the
process 300 may be performed with respect to variations of
systems comprising various game application environments,
to simplify discussion, the process 300 will be described
with respect to the interactive computing system 140.
[0074] At block 302, the system generates synthetic face
models of virtual entities. The synthetic training can be
generated by an authoring engine. The synthetic training
data 132 can be a face model generated by the authoring
engine 130. The system can use random parameters gener-
ated by the authoring engine 130 and generate correspond-
ing synthetic face models.

[0075] Atblock 304, the system receives authoring param-
eters for face models. The synthetic training data generated
by the authoring engine can include authoring parameters
used for generating the face models. The authoring param-
eters correspond to the parameters used by a parametric
facial modeling system to generate the face models.
[0076] At block 306, the system determines the latent
feature representation of the face models. The latent feature
representation 114 can be generated by the identity engine
110 for each of the generated synthetic images. The identity
engine may be a universal encoder for translating the input
images and video into latent feature space representations. A
resulting latent feature representation may be generated
which is based on distributions of latent variables. The
identity engine can be a pretrained encoder, such as FaceNet,
configured to generate a latent feature representation of a
defined length, such as a 512 value encoding.

[0077] At block 308, the system generates a mapping of
the latent feature representation to the authoring parameters.
The goal of training the decoder engine 120 is to generate a
face model based on latent feature representation 114 using
the authoring parameters 124. The training of the decoder
engine 120 generates a mapping of a latent representation
(e.g., latent feature representation 114) to another linear
model (e.g., the authoring parameters 124 of a linear mod-
eling space for a blendshape-based model) to generate
shapes consistent with the domain used for training the
autoencoder. To construct the mapping using ML tech-
niques, random parameters can be generated by the author-
ing engine 130 and the corresponding synthetic images.
Next, a latent feature representation 114 is generated by the
identity engine 110 for the generated synthetic images. The
data pairs (i.e., the authored face models and corresponding
latent feature representation 114) comprise the training data
for the corresponding supervised ML problem. A Deep
Neural Network (DNN) approach can be used to train the
ML model.

[0078] At block 310, the system outputs a decoder engine.
The decoder engine is configured to generate authoring
parameters 124 for the authoring engine 130 based on latent
feature representations. The decoder engine 120 can be

US 2024/0331293 Al

trained for a specific identity engine 110 and a specific
authoring engine 130. Advantageously, once a decoder
engine 120 is generated, new face models can be generated
by the authoring engine 130 by providing latent feature
representations 114 generated by the identity engine 110 to
the decoder engine 120.

[0079] FIG. 4 is a flowchart of an example process 400 for
generating face models based on latent feature representa-
tions of identities. The process 400 can be implemented by
any system that can process data and generate face models.
For example, the process 400, in whole or in part, can be
implemented by a game application 104, an interactive
computing system 140, face generation system 150 and/or
another system. Although any number of systems, in whole
or in part, can implement the process 400, to simplify
discussion, the process 400 will be described with respect to
particular systems. Further, although embodiments of the
process 400 may be performed with respect to variations of
systems comprising various game application environments,
to simplify discussion, the process 400 will be described
with respect to the interactive computing system 140.
[0080] At block 402, the system receive a request 108 to
generate identities for one or more face models. The request
108 can be generated prior to operation of a game applica-
tion (e.g., game application 104) in order to create face
models that are to be pre-loaded into the game application.
In such instances, the face generation system 150 may be
executed during game development. In some embodiments,
the face generation system 150 request may be configured to
receive requests during runtime of the game application 104.
The request can specify a number of face identities/models
to generate. For example, the request may be a request for
face models to populate a stadium (e.g., thousands), a city
street (e.g., hundreds), or other type of in-game event or
location.

[0081] At block 404, the system generates a latent feature
representation for each requested face model. The latent
feature representation 114 can be pseudo-randomly gener-
ated. The pseudo-random generation can be performed in
order to select representations within the latent space that
represent visually distinct faces. If values are selected within
the latent space that are too close, the faces will not be
substantially distinguishable. The pseudo-random genera-
tion of the latent feature representation 114 can be config-
ured to select the values that are different from each other by
a defined threshold or magnitude.

[0082] At block 406, the system generates authoring
parameters for each of the latent feature representations. The
authoring parameters that are generated can be used by a
parametric facial modeling system. A parametric facial mod-
eling system can capture a face shape via weights applied to
the blendshapes to generate a face model. In some embodi-
ments, the authoring parameters 124 can identity blendshape
weights that can be used by an authoring engine 130 to
generate a face model 132.

[0083] At block 408, the system generates a face model
based on the authoring parameters. An authoring engine can
generate a face model based on the authoring parameters.
The authoring engine can generate a mesh having a face
shape defined by the weights of each of the blendshapes of
the parametric facial model.

[0084] At block 410, the system generates additional face
characteristics. The system can additionally be configured to
generate other facial characteristics, such as skin textures,

Oct. 3, 2024

eye textures, hair style, facial effects (e.g., ear rings, scars,
freckles, etc.) that are used to complete a facial model.

[0085] At block 412, the system outputs a face model for
each of the latent feature representations. The output of the
face model can include the mesh, textures, and data asso-
ciated with generation of the face model by the authoring
engine.

Computing System

[0086] FIG. 6 illustrates an embodiment of computing
device 10 according to the present disclosure. Other varia-
tions of the computing device 10 may be substituted for the
examples explicitly presented herein, such as removing or
adding components to the computing device 10. The com-
puting device 10 may include a game device, a smart phone,
a tablet, a personal computer, a laptop, a smart television, a
car console display, a server, and the like. As shown, the
computing device 10 includes a processing unit 20 that
interacts with other components of the computing device 10
and also external components to computing device 10. A
media reader 22 is included that communicates with media
12. The media reader 22 may be an optical disc reader
capable of reading optical discs, such as CD-ROM or DVDs,
or any other type of reader that can receive and read data
from game media 12. One or more of the computing devices
may be used to implement one or more of the systems
disclosed herein.

[0087] Computing device 10 may include a separate
graphics processor 24. In some cases, the graphics processor
24 may be built into the processing unit 20. In some such
cases, the graphics processor 24 may share Random Access
Memory (RAM) with the processing unit 20. Alternatively,
or in addition, the computing device 10 may include a
discrete graphics processor 24 that is separate from the
processing unit 20. In some such cases, the graphics pro-
cessor 24 may have separate RAM from the processing unit
20. Computing device 10 might be a handheld video game
device, a dedicated game console computing system, a
general-purpose laptop or desktop computer, a smart phone,
a tablet, a car console, or other suitable system.

[0088] Computing device 10 also includes various com-
ponents for enabling input/output, such as an I/O 32, a user
/O 34, a display /O 36, and a network 1/O 38. /O 32
interacts with storage element 40 and, through a device 42,
removable storage media 44 in order to provide storage for
computing device 10. Processing unit 20 can communicate
through I/O 32 to store data, such as game state data and any
shared data files. In addition to storage 40 and removable
storage media 44, computing device 10 is also shown
including range of motion (Read-Only Memory) 46 and
RAM 48. RAM 48 may be used for data that is accessed
frequently.

[0089] User I/O 34 is used to send and receive commands
between processing unit 20 and user devices, such as game
controllers. In some embodiments, the user I/O can include
a touchscreen inputs. The touchscreen can be capacitive
touchscreen, a resistive touchscreen, or other type of touch-
screen technology that is configured to receive user input
through tactile inputs from the user. Display I/O 36 provides
input/output functions that are used to display images from
the game being played. Network 1/O 38 is used for input/
output functions for a network. Network I/O 38 may be used
during execution of a game.

US 2024/0331293 Al

[0090] Display output signals produced by display /O 36
comprising signals for displaying visual content produced
by computing device 10 on a display device, such as
graphics, user interfaces, video, and/or other visual content.
Computing device 10 may comprise one or more integrated
displays configured to receive display output signals pro-
duced by display I/O 36. According to some embodiments,
display output signals produced by display I/O 36 may also
be output to one or more display devices external to com-
puting device 10, such a display 16.

[0091] The computing device 10 can also include other
features that may be used with a game, such as a clock 50,
flash memory 52, and other components. An audio/video
player 56 might also be used to play a video sequence, such
as a movie. It should be understood that other components
may be provided in computing device 10 and that a person
skilled in the art will appreciate other variations of comput-
ing device 10.

[0092] Program code can be stored in range of motion 46,
RAM 48 or storage 40 (which might comprise hard disk,
other magnetic storage, optical storage, other non-volatile
storage or a combination or variation of these). Part of the
program code can be stored in range of motion that is
programmable (ROM, PROM, EPROM, EEPROM, and so
forth), part of the program code can be stored in storage 40,
and/or on removable media such as game media 12 (which
can be a CD-ROM, cartridge, memory chip or the like, or
obtained over a network or other electronic channel as
needed). In general, program code can be found embodied in
a tangible non-transitory signal-bearing medium.

[0093] Random access memory (RAM) 48 (and possibly
other storage) is usable to store variables and other game and
processor data as needed. RAM is used and holds data that
is generated during the execution of an application and
portions thereof might also be reserved for frame buffers,
application state information, and/or other data needed or
usable for interpreting user input and generating display
outputs. Generally, RAM 48 is volatile storage and data
stored within RAM 48 may be lost when the computing
device 10 is turned off or loses power.

[0094] As computing device 10 reads media 12 and pro-
vides an application, information may be read from game
media 12 and stored in a memory device, such as RAM 48.
Additionally, data from storage 40, range of motion 46,
servers accessed via a network (not shown), or removable
storage media 46 may be read and loaded into RAM 48.
Although data is described as being found in RAM 48, it will
be understood that data does not have to be stored in RAM
48 and may be stored in other memory accessible to pro-
cessing unit 20 or distributed among several media, such as
media 12 and storage 40.

[0095] It is to be understood that not necessarily all objects
or advantages may be achieved in accordance with any
particular embodiment described herein. Thus, for example,
those skilled in the art will recognize that certain embodi-
ments may be configured to operate in a manner that
achieves or optimizes one advantage or group of advantages
as taught herein without necessarily achieving other objects
or advantages as may be taught or suggested herein.
[0096] All of the processes described herein may be
embodied in, and fully automated, via software code mod-
ules executed by a computing system that includes one or
more computers or processors. The code modules may be
stored in any type of non-transitory computer-readable

Oct. 3, 2024

medium or other computer storage device. Some or all the
methods may be embodied in specialized computer hard-
ware.

[0097] Many other variations than those described herein
will be apparent from this disclosure. For example, depend-
ing on the embodiment, certain acts, events, or functions of
any of the algorithms described herein can be performed in
a different sequence or can be added, merged, or left out
altogether (for example, not all described acts or events are
necessary for the practice of the algorithms). Moreover, in
certain embodiments, acts or events can be performed con-
currently, for example, through multi-threaded processing,
interrupt processing, or multiple processors or processor
cores or on other parallel architectures, rather than sequen-
tially. In addition, different tasks or processes can be per-
formed by different machines and/or computing systems that
can function together.

[0098] The various illustrative logical blocks and modules
described in connection with the embodiments disclosed
herein can be implemented or performed by a machine, such
as a processing unit or processor, a digital signal processor
(DSP), an application specific integrated circuit (ASIC), a
field programmable gate array (FPGA) or other program-
mable logic device, discrete gate or transistor logic, discrete
hardware components, or any combination thereof designed
to perform the functions described herein. A processor can
be a microprocessor, but in the alternative, the processor can
be a controller, microcontroller, or state machine, combina-
tions of the same, or the like. A processor can include
electrical circuitry configured to process computer-execut-
able instructions. In another embodiment, a processor
includes an FPGA or other programmable device that per-
forms logic operations without processing computer-execut-
able instructions. A processor can also be implemented as a
combination of computing devices, for example, a combi-
nation of a DSP and a microprocessor, a plurality of micro-
processors, one Or more microprocessors in conjunction
with a DSP core, or any other such configuration. Although
described herein primarily with respect to digital technol-
ogy, a processor may also include primarily analog compo-
nents. For example, some or all of the signal processing
algorithms described herein may be implemented in analog
circuitry or mixed analog and digital circuitry. A computing
environment can include any type of computer system,
including, but not limited to, a computer system based on a
microprocessor, a mainframe computer, a digital signal
processor, a portable computing device, a device controller,
or a computational engine within an appliance, to name a
few.

[0099] Conditional language such as, among others,
“can,” “could,” “might” or “may,” unless specifically stated
otherwise, are understood within the context as used in
general to convey that certain embodiments include, while
other embodiments do not include, certain features, elements
and/or steps. Thus, such conditional language is not gener-
ally intended to imply that features, elements and/or steps
are in any way required for one or more embodiments or that
one or more embodiments necessarily include logic for
deciding, with or without user input or prompting, whether
these features, elements and/or steps are included or are to
be performed in any particular embodiment.

[0100] Disjunctive language such as the phrase “at least
one of X, Y, or Z,” unless specifically stated otherwise, is
understood with the context as used in general to present that

US 2024/0331293 Al

an item, term, etc., may be either X, Y, or Z, or any
combination thereof (for example, X, Y, and/or Z). Thus,
such disjunctive language is not generally intended to, and
should not, imply that certain embodiments require at least
one of X, at least one of Y, or at least one of Z to each be
present.

[0101] Any process descriptions, elements or blocks in the
flow diagrams described herein and/or depicted in the
attached figures should be understood as potentially repre-
senting modules, segments, or portions of code which
include one or more executable instructions for implement-
ing specific logical functions or elements in the process.
Alternate implementations are included within the scope of
the embodiments described herein in which elements or
functions may be deleted, executed out of order from that
shown, or discussed, including substantially concurrently or
in reverse order, depending on the functionality involved as
would be understood by those skilled in the art.

[0102] Unless otherwise explicitly stated, articles such as

%

a” or “an” should generally be interpreted to include one or
more described items. Accordingly, phrases such as “a
device configured to” are intended to include one or more
recited devices. Such one or more recited devices can also
be collectively configured to carry out the stated recitations.
For example, “a processor configured to carry out recitations
A, B and C” can include a first processor configured to carry
out recitation A working in conjunction with a second
processor configured to carry out recitations B and C.
[0103] It should be emphasized that many variations and
modifications may be made to the above-described embodi-
ments, the elements of which are to be understood as being
among other acceptable examples. All such modifications
and variations are intended to be included herein within the
scope of this disclosure.

[0104] The following list has example embodiments that
are within the scope of this disclosure. The example embodi-
ments that are listed should in no way be interpreted as
limiting the scope of the embodiments. Various features of
the example embodiments that are listed can be removed,
added, or combined to form additional embodiments, which
are part of this disclosure.

[0105] It should be understood that the original applicant
herein determines which technologies to use and/or produc-
tize based on their usefulness and relevance in a constantly
evolving field, and what is best for it and its players and
users. Accordingly, it may be the case that the systems and
methods described herein have not yet been and/or will not
later be used and/or productized by the original applicant. It
should also be understood that implementation and use, if
any, by the original applicant, of the systems and methods
described herein are performed in accordance with its pri-
vacy policies. These policies are intended to respect and
prioritize player privacy, and to meet or exceed government
and legal requirements of respective jurisdictions. To the
extent that such an implementation or use of these systems
and methods enables or requires processing of user personal
information, such processing is performed (i) as outlined in
the privacy policies; (ii) pursuant to a valid legal mecha-
nism, including but not limited to providing adequate notice
or where required, obtaining the consent of the respective
user; and (iii) in accordance with the player or user’s privacy
settings or preferences. It should also be understood that the
original applicant intends that the systems and methods
described herein, if implemented or used by other entities,

Oct. 3, 2024

be in compliance with privacy policies and practices that are
consistent with its objective to respect players and user
privacy.

What is claimed is:

1. A computer-implemented method comprising:

receiving a request to generate a first virtual face model;

accessing an identity engine trained based on a plurality
of human faces, each human face being defined based
on location information associated with a plurality of
facial features, wherein the identity engine trained to
generate a latent feature representation of individual
human faces, wherein the latent feature representation
is associated with an identity of the virtual human face;

generating, using the identity engine, a latent feature
representation of the first virtual face based at least in
part on the request, wherein the latent feature repre-
sentation is associated with a first identity;

accessing a decoding engine, the decoding engine trained

to reconstruct, via a latent variable space, authoring
parameters for an authoring engine based on a latent
feature representation of a human face;

generating, using the decoding engine, authoring param-

eters based at least in part on the latent feature repre-
sentation of the first virtual face; and

generating, using the authoring engine, a virtual face

model of the at least one virtual face based at least in
part on the authoring parameters, wherein the virtual
face model has the first identity, wherein the virtual
face model is mesh model.

2. The computer-implemented method of claim 1,
wherein the request further comprises an image of a human
face, and wherein the image of the human has the first
identity.

3. The computer-implemented method of claim 1,
wherein the latent feature representation is pseudo-randomly
generated based on a latent space associated with the iden-
tity engine.

4. The computer-implemented method of claim 3,
wherein the request further comprises requests to generate a
plurality of virtual face models and latent feature represen-
tation of individual virtual faces is generated for each of the
plurality of requested virtual face models.

5. The computer-implemented method of claim 4,
wherein each of the plurality of virtual face identities is
pseudo-randomly generated and each of the virtual face
identities is generated from the latent space associated with
the identity engine, wherein each latent feature representa-
tion is separated from other latent feature representations by
a defined threshold value.

6. The computer-implemented method of claim 1 further
comprising generating at least one facial characteristic asso-
ciated with the mesh of the virtual face model.

7. The computer-implemented method of claim 6,
wherein the at least one facial characteristic comprises at
least one of skin texture, eye texture, hair mesh, or hair
texture.

8. The computer-implemented method of claim 1,
wherein the decoding engine is trained based on the latent
space specific to the identity engine and the authoring
parameters specific to the authoring engine.

9. The computer-implemented method of claim 1,
wherein the latent feature representation is a vector have
defined number of values.

US 2024/0331293 Al

10. The computer-implemented method of claim 9,
wherein the vector is representative of an invariant identity
of first identity.
11. The computer-implemented method of claim 1,
wherein the virtual face model is generated based on weights
associated with a plurality of blendshapes that the define a
shape of the mesh model.
12. The computer-implemented method of claim 11,
wherein the authoring parameters define weights associated
with the plurality of blendshapes.
13. The computer-implemented method of claim 1,
wherein the decoding engine is a machine learning gener-
ated using a deep neural network.
14. Non-transitory computer storage media storing
instructions that when executed by a system of one or more
computers, cause the one or more computers to perform
operations comprising:
receiving a request to generate a first virtual face model;
accessing an identity engine trained based on a plurality
of human faces, each human face being defined based
on location information associated with a plurality of
facial features, wherein the identity engine trained to
generate a latent feature representation of individual
human faces, wherein the latent feature representation
is associated with an identity of the virtual human face;

generating, using the identity engine, a latent feature
representation of the first virtual face based at least in
part on the request, wherein the latent feature repre-
sentation is associated with a first identity;

accessing a decoding engine, the decoding engine trained

to reconstruct, via a latent variable space, authoring
parameters for an authoring engine based on a latent
feature representation of a human face;

generating, using the decoding engine, authoring param-

eters based at least in part on the latent feature repre-
sentation of the first virtual face; and

generating, using the authoring engine, a virtual face

model of the at least one virtual face based at least in
part on the authoring parameters, wherein the virtual
face model has the first identity, wherein the virtual
face model is mesh model.

15. The non-transitory computer storage media of claim
14, wherein the latent feature representation is pseudo-
randomly generated based on a latent space associated with
the identity engine.

16. The non-transitory computer storage media of claim
15, wherein the request further comprises requests to gen-
erate a plurality of virtual face models and latent feature

Oct. 3, 2024

representation of individual virtual faces is generated for
each of the plurality of requested virtual face models.

17. The non-transitory computer storage media of claim
16, wherein each of the plurality of virtual face identities is
pseudo-randomly generated and each of the virtual face
identities is generated from the latent space associated with
the identity engine, wherein each latent feature representa-
tion is separated from other latent feature representations by
a defined threshold value.

18. A system comprising one or more computers and
non-transitory computer storage media storing instructions
that when executed by the one or more computers, cause the
one or more computers to perform operations comprising:

receiving a request to generate a first virtual face model;

accessing an identity engine trained based on a plurality
of human faces, each human face being defined based
on location information associated with a plurality of
facial features, wherein the identity engine trained to
generate a latent feature representation of individual
human faces, wherein the latent feature representation
is associated with an identity of the virtual human face;

generating, using the identity engine, a latent feature
representation of the first virtual face based at least in
part on the request, wherein the latent feature repre-
sentation is associated with a first identity;

accessing a decoding engine, the decoding engine trained

to reconstruct, via a latent variable space, authoring
parameters for an authoring engine based on a latent
feature representation of a human face;

generating, using the decoding engine, authoring param-

eters based at least in part on the latent feature repre-
sentation of the first virtual face; and

generating, using the authoring engine, a virtual face

model of the at least one virtual face based at least in
part on the authoring parameters, wherein the virtual
face model has the first identity, wherein the virtual
face model is mesh model.

19. The system of claim 18, wherein the request further
comprises requests to generate a plurality of virtual face
models and latent feature representation of individual virtual
faces is generated for each of the plurality of requested
virtual face models.

20. The system of claim 19, wherein each of the plurality
of virtual face identities is pseudo-randomly generated and
each of the virtual face identities is generated from the latent
space associated with the identity engine, wherein each
latent feature representation is separated from other latent
feature representations by a defined threshold value.

* * * * *

